翻訳と辞書
Words near each other
・ Brownfield, Illinois
・ Brownfield, Maine
・ Brownfield, Texas
・ Brownfields, Louisiana
・ Brownhelm Township, Lorain County, Ohio
・ Brownhill
・ Brownhill (surname)
・ Brownhill Creek Recreation Park
・ Brownhills
・ Brownhills railway station
・ Brownhills Watling Street railway station
・ Brownhills West
・ Brownhills West railway station
・ Brownian bridge
・ Brownian dynamics
Brownian excursion
・ Brownian meander
・ Brownian model of financial markets
・ Brownian motion
・ Brownian motion of sol particles
・ Brownian Motion Ultimate
・ Brownian motor
・ Brownian noise
・ Brownian ratchet
・ Brownian surface
・ Brownian tree
・ Brownian web
・ Brownie
・ Brownie (camera)
・ Brownie (folklore)


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Brownian excursion : ウィキペディア英語版
Brownian excursion
In probability theory a Brownian excursion process is a stochastic processes that is closely related to a Wiener process (or Brownian motion). Realisations of Brownian excursion processes are essentially just realizations of a Wiener process selected to satisfy certain conditions. In particular, a Brownian excursion process is a Wiener process conditioned to be positive and to take the value 0 at time 1. Alternatively, it is a Brownian bridge process conditioned to be positive. BEPs are important because, among other reasons, they naturally arise as the limit process of a number of conditional functional central limit theorems.〔Durrett, Iglehart: Functionals of Brownian Meander and Brownian Excursion, (1975)〕
==Definition==

A Brownian excursion process, e, is a Wiener process (or Brownian motion) conditioned to be positive and to take the value 0 at time 1. Alternatively, it is a Brownian bridge process conditioned to be positive.
Another representation of a Brownian excursion e in terms of a Brownian motion process ''W'' (due to Paul Lévy and noted by Kiyoshi Itō and Henry P. McKean, Jr.〔Itô and McKean (1974, page 75)〕)
is in terms of the last time \tau_ that ''W'' hits zero before time 1 and the first time \tau_ that Brownian motion W hits zero after time 1:〔
:
\ \ \stackrel \ \left \ )|} : \ 0 \le t \le 1 \right \} .

Let \tau_m be the time that a
Brownian bridge process W_0 achieves its minimum on (). Vervaat (1979) shows that
:
\ \ \stackrel \ \left \ .


抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Brownian excursion」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.